MA114 Summer 2018

Worksheet 9a - Infinite Series - 6/25/18

1. Identify the following statements as true or false and explain your answers.
(a) If the sequence of partial sums of an infinite series is bounded then the series converges.
(b) $\sum_{n=1}^{\infty} a_{n}=\lim _{n \rightarrow \infty} a_{n}$ if the series converges.
(c) $\sum_{n=1}^{\infty} a_{n}=\sum_{n=0}^{\infty} a_{n+1}$ if both series converge.
(d) Every infinite series with only finitely many nonzero terms converges.
(e) A finite number of terms of an infinite series can be changed without affecting whether or not the series converges.
2. Find the first four partial sums of the series

$$
\sum_{n=0}^{\infty} \frac{1}{n+3}-\frac{1}{n+5}
$$

and find its sum S.
3. For each of the following series, determine whether the series converges or diverges. If it converges, find what value it converges to.
(a) $\sum_{n=0}^{\infty} \frac{2+3^{n}}{5^{n}}$
(b) $\sum_{n=0}^{\infty} \frac{2 n+3}{4 n+1}$
(c) $\sum_{n=0}^{\infty}(-1)^{n-1} \frac{n}{n+1}$
(d) $\sum_{n=1}^{\infty} e^{-n}$.

